

33

DEVELOPMENT OF A SIMULATOR FOR COMPLEX
SYSTEMS: A STUDENTS’ LEARNING PERSPECTIVE

Sandip C. Patel, Morgan State University, MD
Ganesh Bhatt, Morgan State University, MD

Ali Emdad, Morgan State University, MD

Abstract

The art and science of simulation is getting much attention since the 1990s. This attention
has opened the doors for the educational institutions to teach simulations in different courses
ranging from engineering to mathematics to computer programming. However, the students
at the undergraduate level find comprehending simulations difficult, especially developing
and using simulators for important fields such as complex systems. This difficulty is a result
of the challenge the students face in visualizing results of an experiment. In this research, we
take a novel approach of showing the practical use of the simulations to the undergraduate
students. By simulating a complex system using the agent-based modeling, we visually
illustrate students how micro moves produce macro patterns. The paper also provides a
simple view of algorithms and the programming behind the simulations. Observing the
changes in the macro pattern caused by micro pattern will help students in learning how to
analyze complex systems.

Keywords: simulation, complex systems, simulator development, simulator pedagogy

INTRODUCTION

With the rise of powerful computers, simulation models based on computer
algorithms have become popular. For example, the simulation models show how the
behaviors of a school of virtual fish--computer-generated replicas that have been
trained to swim gracefully, hunt for food, and scatter at the approach of a leopard
shark or how the swarms of ants, based on pheromones, find the shortest routes for
their foods. These simulations are replicas of the behaviors of the �real� fish and ant
colony. Several simulation models of ants� colonies have been devised to explore
practical problems like the traveling salesperson�s problem of finding the shortest
paths to travel all the cities that he/she wants to visit.

 In this paper, we illustrate undergraduate students how simulation can be

developed and used as a methodology to collect research data and testing of proposed
models.
 There are different ways of running simulations. You can use Commercial-

Off-The-Shelf (COTS) software such as MATLAB® or use tools such as SAS, SPSS
(which uses a �modeler� which is used for providing analytics). Companies such as

AJIT Vol. 4, No. 1, May 2014

34

Oracle and IBM offer various simulation tools.
 Most disciplines can use simulators. Each discipline has more specific tools.

The process of developing simulation includes developing simulation methodology,
design of the software, and testing generated data validity. The generated data would
be as good as the model used for generating the data. In developing the simulation
methodology, the researcher decides phenomena to be tested and the input and output
to the simulator.

Defining Simulation

Simulation tries to imitate the real-world systems and processes to study behavior of
the systems. Using a model, the behavior of the system is generated and then
characteristics of the real-world systems are drawn by inference. Simulation is useful
in predicting the behavior of a system under different circumstances. Simulation is
an appropriate tool to study interactions of a complex system or of a subsystem
within a complex system (Banks, Carson, Nelson, and Nicol, 2009). Simulation can
also be appropriately used for studying environmental changes, suggesting
improvements in a system, observing effects of input variables, experimenting with
new designs, verifying analytical solutions, determining system requirements, and
learning without the cost of disruption of on-the-job training. However, simulation is
not appropriate when the problem can be solved using a common sense, can be
solved analytically, it is easier to perform direct experiments, costs is too much,
resources or data or time is not available, or the behavior is too complex to be
defined (Banks et al., 2009).

An advantage of simulation is that it mimics the real-world system before a system is
implemented. Simulation provides more concrete data compared to derived data
which have underlying assumptions. The behavior of the system can be analyzed
without disrupting the real system. Testing of a system is easier on a simulator than
the real system. Simulation can provide insight into working of the subsystem and
effect of changing variables. Simulation can be used for playing what-if analysis,
finding any bottleneck, and developing understanding of mechanics of the system.
The disadvantages of simulation include that the model building is not an easy job. It
requires experience and training. It addition to the modeling, the analysis of the
results could require special training since simulation results may be tough to
interpret. Rodger (2012) argues that in many instances fuzzy logic can be an aid to
simulation model. Rodger (2012) provides the example of aviation safety and
vehicle health maintenance.

Simulation models can be categorized as physical or mathematical, static or dynamic,
deterministic or stochastic (probabilistic), and discrete or continuous. Depending on
the type and nature of the project, a simulation method is selected. For example,
project sot estimation can use both probabilistic as well as deterministic approach.
The deterministic approach is used when data is more accurate such as that from the

AJIT Vol. 4, No. 1, May 2014

35

history but ineffective in considering project uncertainties. The probabilistic
estimation when less information is available and can help decide the degree of cost
overruns. Monte Carlo simulation is one of the probabilistic techniques. Chou
(2011) used Mote Carlo simulation to as a decision tool for assessing construction
project�s cost and uncertainties based on project managers� judgments. In this paper
we simulate an agent-based problem.

CASE DETAILS

In this paper, we illustrate how we developed simulation software that was used for
an exploratory study of complex social systems. In recent years, researchers have
shown a great deal of interest in studying complex systems. Even though the
traditional techniques have provided powerful study-tools, a band of researchers have
been dissatisfied with these techniques since such techniques provide only a macro-
level understanding. Understanding complex systems requires a broader aspect of
knowledge that can examine the micro-level activities to understand macro-level
symptoms. For example, sociologists and economists have provided several reasons
of social segregation among people of different races in city, but there has been little
research on understanding how exactly social segregation, a complex system, takes
place. We use this case in which, we model and simulate a characteristic of complex
social system that shows how social segregations in a city take place as a result of
small decisions.

The underlying principle that governs a complex system is that simple rules or
behaviors lead to complex systems behavior. For example, human brain is a
collection of trillions of cells and about 100 billion neurons. However, by looking at
one neuron or even a collection of neurons would not tell much about human
consciousness or human thinking (Coveney and Fowler, 2005). The firing of
millions of neurons in the brain can provide insight on the complexity of human
thinking. In a way, complexity can be examined as the behavior of interacting units,
irrespective of whether atoms, ants in a colony, or neurons firing in a human brain.
The rise of the electronic computer provided both the key and the catalyst to our
exploration of complexity.

The behavior of complex systems cannot be analyzed by examining the behavior of a
single part. To fully comprehend the behavior, a global or macro-level perspective is
required. The mathematical tools used in complex systems are nonlinear dynamics,
graph theory, agent based modeling, time series analysis, cellular automata, network
theory, genetic algorithms and information theory depending on the problems. With
the rise of powerful computers, simulation models based on computer algorithms
have become popular. The simulation models show how the behaviors of a school of
virtual fish - computer-generated replicas - that have been trained to swim gracefully,
hunt for food, and scatter at the approach of a leopard shark, or how the swarms of
ants, based on pheromones, find the shortest routes for their foods.

AJIT Vol. 4, No. 1, May 2014

36

The theory behind agent-based models is that there are some phenomena that can
provide better perspectives about the behavior of the complex systems by directly
modeling them on the compute rather than analyzing through mathematical
equations. The reason is that computer models provide an intuitive sense of how the
models at the macro level behave (Ottino, 2003). The researcher can visualize how
the behavior of a model changes under different conditions and how realistically a
model can replicate the �real� phenomena. According to Ottino (2003:296), �The
origins of agent-based modeling can be traced to cellular automata - rows in a check
board that evolve into rows in a checkerboard that evolve into the next row based on
simple rules. A physical example may be the propagation of fire in a forest. Trees
may be represented as occupying a fraction of the squares in a checkerboard; the rule
may be that fire propagates if two trees are adjacent via the face of a square. Thus,
fire propagates though faces - up, left, and right, but not diagonally. More generally,
the basic building blocks may be identical or may differ in important characteristics;
moreover, these characteristics may change over time, as the agents adapt to their
environment and learn from their experiences. . . .�

METHODOLOGY

Building an effective simulator starts by defining the problem that needs to be
studied. Once the problem is formulated, the objective of the simulator is defined in
terms of what questions need to be answered. Design of the simulator is the next
step. That is, abstract features of the simulator and any assumption are delineated.

Various software packages are available for simulation such as Plant Simulation
(Siemens, 2014), which is used for discrete event simulation. This simulation tool
creates digital models of logistic systems to explore a system�s characteristics and
optimize its performance. The digital models can aid in designing and planning of a
production system and also help run experiments and what-if scenarios on an existing
production system. Using Plant Simulation, Byrne at al. (Byrne, Cathal, Blake, and
Liston, 2013) demonstrated Dell�s supply of partner selection and developed new
partner selection methodology. The authors used discrete event simulation for
modeling. A software for the industry such as construction can take advantage of
Interactive Construction Decision Making Aid (ICDMA) (Anderson, Mukherjee, and
Onder, 2009; Rojas and Mukherjee, 2006) which a simulation software for multiple
simulations for studying different management strategies and conditions of a
construction project. Using the simulated processes of ICDMA, the decision makers
can learn about effects of allocating and re-allocating resources on project
contingencies and find the best way to handle the contingencies. Tang et al. (Tang,
Cass, and Mukherjee, 2013) set up a highway construction project using ICDMA.
The authors studied the effects of construction management strategies on greenhouse
gas emitted during the construction project. The research investigated ways in which
the emission can be controlled by appropriately managing disruptive events. A
simulation application can be developed using software such as MATLAB®. For
example, Uzzafer (2013) presented a MATLAB® based application to computerized

AJIT Vol. 4, No. 1, May 2014

37

parts of the simulation model he proposed. The simulation model was proposed for
strategic management process of software development project which used specific
risk management, cost estimation models, and project estimation tools. The goal was
to aid software practitioners and academics in utilizing the system for software
development projects and further research. The models simulated decision factors
such as cost, risk, budget, and schedule.

The steps in simulating a problem include the following steps: (1) Problem
specification and requirement analysis. During this step, the objective of the study or
the project is set. Next, (2) design the simulator, (3) build the simulation model by
activity such as wring code, (4) test the validity of the data collected using the
simulator, and finally, (5) design experimental runs and execute the runs. In the
following sections, we describe how each of these steps was conducted for the case.
In the following section, we describe the case that was simulated and motivation for
the development.

Simulator Details

The simulator aims at exploring the macro-level details of complex social systems,
such as a city block of houses occupied by different races. More specifically, the
simulator provides data to examine how individual decision of moving into a
neighborhood or house affects a bigger picture of segregated neighborhoods. �The
criterion is that the native wants to live on the houses that are the nearest to other
houses occupied by the natives� (Schelling, 1978). To test how simple preferences of
agents (individuals) can lead to complex outcomes, we simulated and executed test-
runs. We created the simulator in Visual Basic.NET 2010. The program contains the
GUI representing a grid of 21x21 checkboxes, with each checkbox representing a
house (see Figure 1) with a total of 441 houses. The program provides features to
randomly or specifically select houses as those occupied by a race (e.g., a native
group).

The first step in running the simulator involves marking the houses that are occupied
by a racial group. We refer to this racial group as the native group. The landscape of
the houses marked by the initial occupancy is referred as the initial condition. To set
the initial condition, our simulator allows specifying the exact percent of the houses
occupied by the race randomly, or specifying the probability of each house to be
occupied by the race. All the marked houses in each of the simulation run are shown
as occupied by a family of the native group, while unmarked houses are occupied by
a different race (i.e., white families). Then, we run the simulator with several cycles
with one specific criterion.

Simulated Cycles

As explained above, the houses marked are defined as those occupied by the �native
group� in a city population. Once the initial condition is generated, we run a desired

AJIT Vol. 4, No. 1, May 2014

38

number of cycles for showing the movement of families in and out of the city
population. A cycle is meant to simulate a time period, such as a year. That is, a
cycle represents the change in the neighborhood landscape of the city population
within one time-unit. In other words, a cycle represents a next phase of occupancy
by the native group in a given time period, such as a year. For this paper, we ran
three cycles for different initial condition of the native group.

FIGURE 1: Initial Landscape: 5% Random-Occupancy by The Native
Population (Green Cells Show The Native Group)

Simulated Criterion

In this study, we select a simple criterion of household movement from and to the
city population. The criterion is that the native wants to live on the houses that are
the nearest to other houses occupied by the natives (Schelling, 1978). As the natives
attempt to move into the houses that are adjacent to other natives, white race begins
to move away from the city population. Each cycle of simulation shows how the
household movement changes the landscape of the neighborhood in the city
population with more natives moving in adjacent to the other native. For example, if
the 3rd house in the second row of the neighborhood has a native group in the second

AJIT Vol. 4, No. 1, May 2014

39

cycle, the 2nd and the 4th houses in the third row become marked (i.e., occupied by the
native group) in the third cycle. If there are more than one adjacent house occupied
by the native group, then in the following cycle, each side of the consequent native
houses is also marked as occupied by the natives. For example, if the 4th, 5th, and the
6th houses in row five are occupied by natives, then in the next cycle, the 3rd and the
7th houses in row five also gets occupied by the natives.

The program depicts each cycle showing what the next new occupancy would look
like between natives and whites, based on the above criterion. Each of the simulation
test-run displays the racial landscape of the city population. Using the criterion listed
above, we ran the simulator with 5%, 10%, 20%, and 25%initial condition in which
natives randomly occupy the specified percent of the houses in the city population.
In each of the test run, we see an emerging pattern that clearly shows the movement
of whites away from the city population and movement of natives in the city
population.

SIMULATOR-DEVELOPMENT PROCESS

In this section, we provide the details of the development process of the simulator
described above. The development process includes derivation of specifications and
requirements, designing of the simulator software, coding, and finally, executing the
software and collecting results.

Specification and Requirements

In this section, we discuss how the specifications and requirements were developed
for this simulator. Hence, we start with the objective of the study and then explore
what needs to be included in this simulator. As discussed above, the objective of our
study was to study the complex system of social segregation. More specifically, we
were interested in studying how micro decisions by an individual affect the macro
feature. For studying the complex case of social segregation, we required that the
simulator has certain general and specific features. Based on our goal of exactly
what we wanted to study and the literature review of social segregation and
simulation we delineated the following specifications. The specifications also
considered the best practices in programming.

 Visual component: It was important for our study to see how individuals

moved and what effect individual moving had on layout of residential areas. In other
word, we wanted to be able to see both the micro movement of each individual and
the macro picture. The visual component should reflect a real-life scenario as closely
as possible.
 Different and random initial sample sizes: The simulator should

accommodate random and different number of initial population so we can study the
effect of varying initial conditions.

AJIT Vol. 4, No. 1, May 2014

40

 State-by-state runs: The simulator should give the data about each state and
its progression as we run the experiment and not just at the end.
 Types of models: Our study needed to accommodate different social

behaviors. For example, choosing the neighbor on the left-side of an empty house or
the right side of the empty house, or both, and so forth.
 Number of races: We needed our study to be flexible enough so that we can

incorporate several races in our simulator.
 Large total number of individuals: Our study required that we had a

sufficiently large number of individuals so that we can observe the patterns of
segregation.
 Simplicity: We wanted our model to be simple enough so that the associated

code is not too complicated to be understood, modified, or enhanced by the people
other than those who developed it.
 Flexibility: We wanted our model to be flexible so that different situations

can be simulated.
 User-friendly and easy interface: The simulator should have an easy and

comfortable look and feel.
 Portability: The simulator should be able to run on most computer and

operating systems.
 Scalability: We wanted the simulator to be scalable so that we can add

different functionalities or enhance the simulator for different scenarios, for example,
to examine the spread of virus.

Simulation Design

During the design stage, functions and operations of the software are described. Such
descriptions include screen layouts, business rules, and process description and
diagrams. The output of this stage describes the new system as a collection of
modules or subsystems. After considering the specifications listed above, the
different types of simulations techniques, and best practices in programming, we
found that the agent-based simulation would be most appropriate in meeting the
specified needs.

We decided to treat the individuals (people) as intelligent agents. The individuals�
behaviors are modeled in the simulator. The behavior protocol is the decision of an
individual to move in a house. The agent knowledge includes what houses are
occupied. The agent attribute includes an agent�s race. The environment model
includes the rows of houses as environment objects. The environment state is the
current state of house occupancy. The behaviors of agents depend on the agent
behavior protocol and agent knowledge of the environment. The agent behaviors lead
to a new state. In turn, the agents acquire the new environment state information and
based on the agents� behavior, the next stage is created.

AJIT Vol. 4, No. 1, May 2014

41

A layout of 441 houses was selected giving a sufficiently large number and realistic
real-life representation with 21x21 objects each simulating a house. Based on the
above requirements, we chose the design feature of the simulator that would fulfill
each requirement. We decided to build an agent-based simulator. Thomas Schelling
was the first to reason about the phenomenon of complex systems in social
segregation (Schelling, 1978). Even though individuals of similar color might mildly
prefer the company of each other, without realizing that its overall effect at the macro
level. In a sense, each individual makes their own choices at the local level, but the
overall effect of these choices at macro level can lead to social segregation. As
Schelling argues that for example, blacks and whites may get along with one another,
but a slight preference of whites to live near the whites and blacks near the blacks can
over time lead to segregation. Initially, blacks and whites may be distributed
randomly within the city. But some whites will move to the places where other
whites are living, which are likely to increase the number of blacks in their own
neighborhoods, resulting other whites to leave. Simulations can depict these
phenomena how individual preferences can lead to different clusters of populations.
For example, even a weak preference of living by of the same colors can lead to an
overwhelming number of people around. Specific details of the design features,
which correspond with the requirements, are as following.

 Visual component: We selected a screen with 21x21 houses that show the

house occupancy in green at each run state.
 Different and random initial sample sizes: For effective randomness, we ran

the random number generator twice. That is, using the first random number as the
seed for generating the second number so that we can be sure of true randomness.
Also, for the initial layout, we houses occupied by a particular race were randomly
selected. There were two different methods used for randomly marking the house
which are explained in the programming details.
 State-by-state runs: We used the concurrent simulation so that the visual

representations are displayed when the simulator is run. Also, state modeling was
selected rather than continuous.
 Types of models: We implemented only one model where both the adjacent

houses (the house on the left and the house on right) of an occupied house get
occupied at every state. For simplicity, we did not implement other models at this
time.
 Number of races: We kept the simulator flexible enough so that other races

could be added in the future but not at this time.
 Large total number of individuals: We selected 441 houses, which we

considered as a large number for this study.
 Simplicity: Since the code needed to be simple, we chose the deterministic

model because the probabilistic model would have been more complex. Also, we
decide that the model would include only the visual component and not any statistics
data. Only one agent attribute, namely the agent�s race, would be considered. Other
attributes such as gender, age, income group and so forth are not considered as a
factor that would affect an agent�s behavior.

AJIT Vol. 4, No. 1, May 2014

42

 Flexibility: We modularized the software so that it can model different
scenarios. We anticipated that we would add and enhance the model at later time. A
number of routines and procedures were designed maximizing the program
modularity. We chose Visual Basic.NET since it its object-oriented nature would
enable us to write programs using reusable, modular objects. Also, we created the
objects such as a house so that such objects can take different attributes such as a
color to show if the house was occupied. Finally, we kept provisions in the simulator
should be able to simulate different cases so that the future. For example, we chose to
change the color of the checkbox object to show occupancy which would give
multiple choices as opposed to showing the occupancy by checking on or off the
checkbox which would have given only two choices.
 User-friendly and easy interface: We predominantly used GUI (graphical

user interface) to depict the house occupancy landscape. In addition, we show
dynamic graphics on screen for each state. Thirdly, we set the default values of the
attributes and values that were needed to be supplied by a user to assist the user in
deciding.
 Portability: For portability, we chose VB.NET which supports creating an

executable file which that run on most computers.
 Scalability: In our simulator, we included a function that gives the user

flexibility to choose a set of houses for initial occupancy rather than using the
random functionality. This function would later be used for enhancing the simulator
for another case such as simulating contagion.

The following lists the data structures, screen objects, and sub routines designed.

Data Structures

- Checkboxes: This data structure is a two dimensional array of objects and is used
to represent the 21x21 houses. The objects of this array are checkbox controls of
Visual Basic.NET. The array uses variables for defining its size so that just by
changing the variable, the array size can be changed later. This feature was inserted
because the design required flexibility.
- houses: This is a two dimensional integer array. It is used to keep track of house
status, which can be changed to 0 and 1 to indicate the background color of the
associated checkbox. The value zero is used for an empty house indicated by the
light gray color of the checkbox and value 1 for the green color of the checkbox. In
addition to 0 and 1, any other integer can be used in the future to accommodate more
races (represented by colors) in the future. This feature accommodated the design
requirement of flexibility.
- duplicate: This two dimensional integer array is used to temporarily store the
values of the houses array.
- Random number: A variable of class Random() with its Next() method is used for
creating random numbers.

AJIT Vol. 4, No. 1, May 2014

43

Screen Objects

- btnRunSce1_click: This sub procedure executes designed model of the case. That
is, if the house is occupied by the green race, this sub marks the house on the left and
right. This sub calls fill_checkboxes(), Run_the_main_progSce1, associate(), and
count_adjacent() subs.
- BtnClan_Click(): This button is used for clearing all other objects and data
structures so that a new scenario can be run.

Sub Routines

- fill_checkboxes: This sub fills the checkboxes array with appropriate checkbox
objects. For example, the checkboxes(1,1) element is filled with the checkbox
located in the first column of the first row.
- Run_the_main_progSce1() which calls checkneighbour_Sce1 which does the actual
marking of the house.
- Associate(): This sub is used for changing the background color of the houses.

When the user runs the software, the program initializes the array whose elements are
checkboxes. The user chooses how s/he wants to populate the initial layout by
choosing according GUI control on screen. The user has three choices: populate-
exact, populate-approximately, and populate-manual.

In the following sections, we explain the process flow. The processes were divided
into two parts. The following sections list the design for part 1 followed by part 2.

Process: Part 1

Process for populate-exact: The program reads the random percent of houses the user
has chosen to populate. This percent is converted into total number of houses to be
populated. The program goes into a loop that ends when the loop finishes marking
the chosen number of houses (�total_houses�). The program within the loop first
checks if the number of marked houses (marked_houses�) equals the total_houses. If
the loop has not completed marking all the houses, a random row and a column are
selected. The house located at the intersection of this column and the row is marked.

Process for populate-approximately: The program reads the random percent of
houses the user has chosen to populate. Program considers each house at a time,
starting with the first house. A random number is generated between 1 and 100. If
this number falls between 1 and the percent value, the house is marked. This process
is repeated for all the houses on GUI.

Process for populate-manual: The program read a row number and a column number
entered by the user till s/he enters �999� for the row and �999� for the column as the

AJIT Vol. 4, No. 1, May 2014

44

termination values. The program marks each houses at a time located at the
intersection of the row and the column.

Process: Part 2

The program reads the scenario that the user selects to run. Currently, a deterministic
and a probabilistic models have been implemented. However, the specifications
required that the software be open to include other models in the future. The data
structure �house_array� is copied onto a data structure �duplicate_array�, both of
which are arrays. The program checks if a house is occupied. Then, it marks the
houses on the left and the right of the occupied house. All these houses are marked
in the duplicate_array. In order to do this marking, the program start with the first
house repeats the process till it reached the last house. Once the making is
completed, the program copies duplicate_arran onto house_array. The user can select
to run the next cycle.

Coding for the Simulation Model

In addition to fulfilling the requirement of portability, VB.NET provides important
features such as Intellisense and interactive debugging. VB.NET inherits
development environment tools and services of Visual Studio and the .NET
Framework.

We designed two methods for marking the initial population. For both of the
methods of marking, the user uses the same textbox and enters the number in terms
of percent s/he desires the houses to be marked green. Using the processes above,
pseudocode was developed for the entire program. For brevity, we are showing only
a part of the pseudocode below.

(a) Pseudocode for populating randomly but the exact percent of houses supplied by
the user. In this method of populating, the user supplies the percent of houses s/he
wants to mark green (initially occupied houses). We designed and used the following
pseudocode:
 Convert the percent supplied by the use into the number of houses.
 Loop: Check the number of marked houses.
 Until that number of houses are marked:

o Select a random row
o Select a random column
o Mark that house as occupied by the green race.

 Loop end.

(b) Pesudocode for populating houses with the user-supplied probability. In this
method of marking initially occupied houses, each house has the user-supplied
probability of getting marked. This method will give the randomly chosen houses

AJIT Vol. 4, No. 1, May 2014

45

and yield approximately the percent of houses equal to the percent probability
supplied.
 for each of the houses:

o Flip a die (i. e., generate a random number) which has numbers 1 to 100.
o If the die shows a number between 1 and the probability supplied by the

user, mark the house.

The example of the above psuedocode is as following: If the user wants the 34%
probability of house selection, a die is flipped to generate a number from 1 to 100. If
the number generated is between 1 and 34, the first house gets marked. Then, this
process is repeated for each of the rest of the houses.

Simulation Model Validation

We conducted experimental runs of the simulator to verify if the data produced was
valid. We compared the produced data and statistics by manually counting at each
step. We observed the change of agent environment to see if the simulator correctly
processed the step-by-step outcome. For the randomness, we ran the test a large
number of times to verify that there was not pattern in the initial selection of the
house and each house was truly randomly selected when the trial was run for a large
number of times.

Simulator Execution and Results

To test how simple preferences can lead to complex outcome, we ran different sets of
simulations by setting the initial condition of the native group to 5%, 10%, 20%, and
25% randomly. Each of the simulation was run for three cycles, where each cycle
successively changes the landscape of the native group.

To illustrate how local criterion of native group can lead to a complex structure of
population based on the racial preferences, we begin with a random population of
native group with 5%. That mean, the initial state starts with 5% of native group in
the population of 441 houses. Therefore, we begin with random 5% (i.e., 22 houses)
as the initial condition of the natives and rest 419 houses as occupied by whites in the
population. In this landscape, we see that all the houses, except one block of 2
houses, adjoining to each other, are occupied by single native group (see Figure 1).
After the first cycle of simulation, as show in Figure 2, we find a large shift in the
proportion of populations of natives in the city population. We find 15 different
blocks of 3 houses adjoining to each other; 1 block with 4 houses adjoining to each
other; 1 block of 5 houses adjoining to each other, and 1 block of 8 houses adjoining
to each other have been occupied by native group. After running the second
simulated cycle, we find a big shift in the population of the natives that varies from 1
block of 4 houses, 10 different blocks of 5 houses, 1 block of 7 houses, 1 block of 9
houses, 1 block of 10 houses, and 1 block 15 houses adjacent to each other are
occupied by natives. In the 3rd cycle, the shift has been dramatic where we find

AJIT Vol. 4, No. 1, May 2014

46

several houses consisting of 8 blocks with 7 houses adjoining to each other; 1 block
of 9 houses adjoining to each other; 2 blocks of 12 houses adjoining to each other,
and 2 blocks of 17 houses adjoining to each other are populated by the native group
(see Figure 3). Figure 3 demonstrates how the population of native group has
aggregated close to each other in repeated runs of the simulation cycles as well as
how whites have successively moved away from the neighborhood.

FIGURE 2: Landscape After the First Cycle of 5% Initial Occupancy by the
Native Population (Green Cells Show the Native Group)

In the other detailed example, we examine the initial condition representing 1/5th of
the city population consisting of natives. We begin with random 20% (i.e., 88
houses) as the initial condition of the natives in the city. Initially, we find that 65
single houses of natives are adjoining to the white�s houses; 7 different blocks of
houses with 2 houses in each block adjoining to each other occupied by natives; 3
blocks with 3 adjoining houses in each block were occupied by natives. After the
first cycle of simulation, we find a large shift in the proportion of populations of
natives in the city population ranging from 4 blocks with 2 houses adjoining to each
other. We find 24 blocks of 3 houses adjoining to each other; 2 blocks with 4 houses
adjoining to each other; 7 blocks of5 houses adjoining to each other; 4 blocks of 7
houses adjoining to each other; 2 blocks of 8 houses adjoining to each other, and 1

AJIT Vol. 4, No. 1, May 2014

47

block of 11 houses adjoining to each other; and 1 block of 12 houses adjoining to
each other have been occupied by native group. After the second run of the
simulation, we find a huge shift in the population of the natives that varies from 4
blocks of 3 houses. There are 2 blocks of 10 houses, a block of 16 houses, a block of
17 houses, a block of 18 houses, a block of 19 houses, and a block of 21 houses
adjacent to each other. After the 3rd cycle, the shift is dramatic where we find several
houses consisting of 2 blocks with 11, 12, 16, 18 houses adjoining to each other; 3
blocks of houses are entirely (i.e., 21 houses) populated by the natives and one block
consisting of 20 native houses.

FIGURE 3: Landscape After the Third Cycle of 5% Initial Occupancy by the
Native Population (Green Cells Show the Native Group)

CONCLUSIONS

Our paper provides a visual illustration of changes in the micro level and their
significance at the macro level. Certainly, all of the simulation exercises are rooted
in the disciplines of mathematics, computers, and interdisciplinary areas such as
socio-economic, socio-technological, and socio-political policies. Interactions
among different disciplinary areas are important to provide a realistic understanding

AJIT Vol. 4, No. 1, May 2014

48

of the problems and their solutions, since simulations are based on number of
assumptions and the way the problems are framed (Levy and Wilensky, 2011).
However, without going in depth of the methodological issues, we have offered an
understanding of simulations and agent-based modeling to students. The goal of this
paper has been demystifying the complexity by developing and using simulation. We
not only show how simple repetitive behaviors following a set of rules can lead to
complex behaviors but also they can take different structures. A clear pattern of
segregated areas were formed within a small number of cycles even with a small
initial population of the native individuals occupying the houses. The simulator thus
showed quick emergence of the large-scale effects of individual decisions.

Since a simulation tends to provide a realistic view of the actual structure and
behavior, it is not difficult to understand how simulation can map the complex
systems properties (Collard, Mesmoudi, Ghetiu, and Polack, 2013). The results
could be summarized that the simulation shows that the macrostructure is more than
the sum of the micro-parts, since residents were following simple a behavior, but this
behavior led to the segregation of the communities. Secondly, the simulation shows
the emergent behavior of the complex system, which could not be known simply
examining the micro-level. And finally, the simulation leads to the conclusion that
often a reductionist approach falls short in understanding the behavior of the system
as a whole.

REFERENCES

Anderson, G. R., Mukherjee, A., and Onder, N. 2009. Traversing and Querying Constraint

Driven Temporal Networks to Estimate Construction Contingencies. Automation in
Construction (18:6), 798-813.

Banks, J., Carson, J.S. II, Nelson, B.L., and Nicol, D.M. 2009. Discrete-Event System
Simulation (5th Edition), Prentice Hall, Upper Saddle River, NJ.

Byrne, P.J., Cathal, H, Blake, P., and Liston, P. 2013. A Simulation Based Supply Partner
Selection Decision Support Tool for Service Provision in Dell. Computers and
Industrial Engineering (64:4), 1033-1044.

Chou, J. 2011. Cost Simulation in an Item-Based Project Involving Construction Engineering
and Management. International Journal of Project Management (29:6), 706-717.

Collard, P., Mesmoudi, S., Ghetiu, T., and Polack, F. 2013. Emergence of Frontiers in
Networked Schelling Segregationist Models. Journal Complex Systems (22:1), 35-
59.

Coveney P., and Fowler, P. 2005. Modelling Biological Complexity: A Physical Scientist's
Perspective. Journal of Royal Society Interface (2:4), 267-280.

Levy, S.T., and Wilensky, U. 2011. Mining Students Inquiry Actions for Understanding of
Complex Systems. Computers & Education (56:3), 556-573.

Ottino, J. 2003. Complex Systems. AIChE Journal (49:2), 292-299.
Rodger, J.A. 2012. Toward Reducing Failure Risk in An Integrated Vehicle Health

Maintenance System: A Fuzzy Multi-Senor Data Fusion Kalman Filter Approach for
IVHMS. Expert Systems with Applications (39:10), 9821-9836.

AJIT Vol. 4, No. 1, May 2014

49

Rojas, E., and Mukherjee, A. 2006. A Multi-Agent Framework for General Purpose
Situational Stimulation in the Construction Management Domain. Journal of
Computing in Civil Engineering (20:6), 1-12.

Schelling, T. 1978. Micromotives and Macrobehavior. New-York: Norton, New York.
Siemens, 2014 Plant Simulation. http://www.plm.automation.siemens.com/en_us/products/

tecnomatix/plant_design/plant_simulation.shtml. [Retrieved: April 5, 2014].
Tang, P., Cass, D., and Mukherjee, A. 2013. Investigating the Effect of Construction

Management Strategies on Project Greenhouse Gas Emissions Using Interactive
Simulation. Journal of Cleaner Production (54), 78-88.

Uzzafer, M. 2013. A Simulation Model for Strategic Management Process of Software
Project. Journal of Systems and Software (86:1), 21-37.

About the Authors

Sandip C. Patel, Ph.D., a US Fulbright research scholar for 2014-15, is an Associate
Professor in the Information Science & Systems Department at the Morgan State University.
He has published more than 23 refereed journal papers and 14 conference papers since 2004.
Dr. Patel is on the editorial board for six journals and has been a reviewer for 15 journals. Dr.
Patel has served as a review panelist for the National Science Foundation�s grant of $20
million on cybersecurity. His research has been published in journals such as Communications
of the ACM and International Journal of Business Information System.

Ganesh Bhatt, Ph. D., is a professor in the Department of Information Science & Systems at
Morgan State University. His articles have been published in various journals such as Journal
of Management Information Systems, Communications of the ACM, Information &
Management, Decision Support Systems, OMEGA, International Journal of Production &
Operation Management, etc.

Ali Emdad, Ph.D., is Professor and Chair of the Department of Information Science and
Systems. He received a Ph.D. degree from Case Western Reserve University and has
completed the executive management and leadership programs at Harvard and Yale
Universities. Dr. Emdad has published more than 50 articles in his research interests of IS
strategy; Project Management; education issues- national and global perspectives. Dr. Emdad
has received the University's Iva G. Jones Medallion Award, the highest honor given to a
faculty for outstanding teaching, scholarship, and service. In 2006, he was awarded a
Fulbright Scholarship for teaching and research.

